LPWAN CZECH IOT CLOUD

LPWAN SigFox node

Features

- Fully integrated, single-chip RF transceiver (SIGFOX compliant)
- Based on WISOL SFM10R1 chip
- Small dimensions 24.31 x 14.97 mm
- Controlled by simple AT commands
- Only 4 wire connection
- U.FL and DuPont compatible
- System-on-chip solution including SIGFOX related protocol handling for modem operation
- ON® microcontroller core with embedded firmware, SIGFOX, protocol stack and ID/PAC
- Supports up- and downlink operation, i.e., transmit and receive of data telegrams with SIGFOX base stations in EU
- Typical operating frequency uplink 868.130MHz, downlink 869.525MHz
- Low current consumption 65mA during transmit and 15mA during receive operation
- Typical sleep mode current 2μA at VCC +3.3V and +25°C
- UART interface for data access and transceiver configuration and control
- Supply voltage ranges from 1.8V to 3.6V
- Temperature range –30°C to +85°C

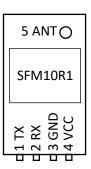
Application

Applications

SIGFOX™ compatible modem for long-range, low-power and low-cost applications using the SIGFOX network

- Home and building automation
- Alarm and security systems
- Smart environment and industrial
- Smart parking
- Tracking
- Metering

1. General Description


1.1. Introduction

The LPWAN Sigfox node 868 is a highly integrated, low-power RF transceiver with an integrated ON® microcontroller for applications using the wide area SIGFOX™ network.

The LPWAN Sigfox node 868 is partitioned into three sections: an RF front end, a digital baseband and the low power microcontroller. The product is designed for the EU ISM frequency band in the range of 868.0MHz to 868.6MHz and 869.4MHz to 869.65MHz. The external part count is kept to a minimum due to the very high level of integration in this device. By combining outstanding RF performance with highly sophisticated baseband signal processing, robust wireless communication can be easily achieved.

The UART interface enables external control and device configuration.

1.2. Pinning

Pin No.	Pin Name	Description
1	TX	UART TX output.
2	RX	UART RX input.
3	GND	Power ground
4	VCC	Power VCC
5	ANT	Antenna input and output

UART configuration is 9600baud, 8 data bits, 1 stop bit, no parity, and no flow control.

1.3. Applications

This section provides application examples for the LPWAN Sigfox node device.

1.3.1. Example A

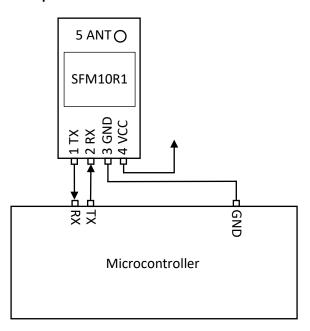
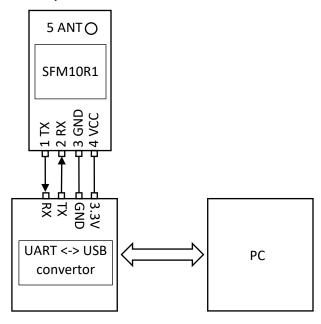
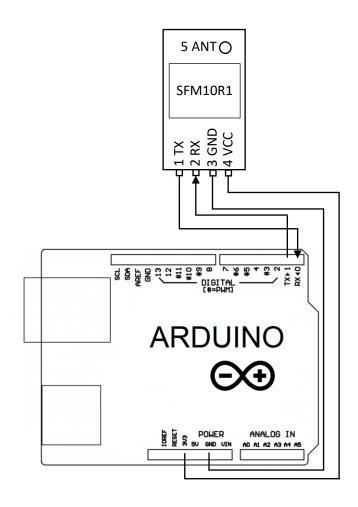
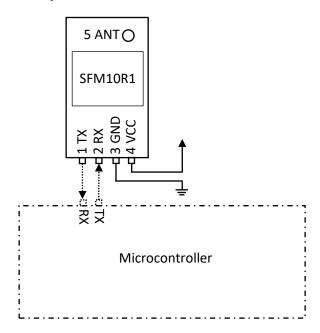



Figure shows basic LPWAN Sigfox node connection to generic microcontroller. In this case the microcontroller sends AT commands to node directly thru the UART interface (9600baud). Is recommended to use full duplex UART. In case of using **half duplex**, AT commands has to be ended **only** with **one** of '\r' or '\n' not both. Because if you send "AT\r\n" the Sigfox node starts sending "OK" instantly after it receive '\r', but microcontroller is still sending byte '\n'.


1.3.2. Example B

This example shows connection between LPWAN Sigfox node and computer. In this case is used UART to USB convertor, whose driver creates virtual COM port in computer operating system. Thru this port is possible to send AT commands to the Sigfox node. Communication speed is 9600baud. **AT** commands has to be written in **upper case**.

1.3.3. Example C



This is the simplest connection with the shortest code that is needed. After power supply connected to Arduino board message 0x01020304 will sent to Sigfox network. LPWAN SigFox node (RX and TX pins) must be **disconnected when you are downloading program to Arduino** in this example.

```
void setup(void){
    Serial.begin(9600);
    Serial.println("AT$SF=01020304");
}
void loop(void){
}
```


1.3.4. Example D

This example shows how to use LPWAN Sigfox NODE to automatically send out of band messages. In this case microcontroller is not required (only for configuration). This messages contains temperature of the module, voltage on VCC in standby mode and voltage on VCC in TX mode. In default configuration LPWAN Sigfox Node sends this out of band message each 24 hours. Is possible to modify this interval to another value in interval 0 to 24. Changing this value is possible by following AT commands:

AT command	Description
ATS300=1	Change interval of sending out of band message to one hour. Set
	to 0 to disable sending of this message.
AT\$WR	Save modified configuration to flash.


Arduino program for this example. It sends AT command for change interval.

```
void setup(void){
    Serial.begin(9600);
    Serial.println("ATS300=1");
    Serial.println("AT$WR");
}
void loop(void){
}
```

After program is downloaded to the microcontroller, you can disconnect this microcontroller. After download LPWAN Sigfox NODE need only power source. Please keep in mind that sleep mode is not used in this case.

1.3.5. Example E

This image depicts connection of LPWAN Sigfox node to the Arduino for measuring temperature by sensor DS18B20. Communication between Arduino and Sigfox node is achieved by SoftwareSerial library (pins D10 and D11), therefore is hardware UART (pins D0 and D1) free for communication between Arduino and computer. Temperature sensor DS18B20 use OneWire bus that is initialized at pin D2.

The following code for Arduino reads temperature every 11 minutes and send it to the Sigfox network.

```
#include <OneWire.h>
#include <DallasTemperature.h>
#include <SoftwareSerial.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
```



```
DallasTemperature sensors(&oneWire);
SoftwareSerial mySerial(10, 11); // RX, TX
void measure(){
 //Send the command to get temperatures
 sensors.requestTemperatures();
 char str[20];
 float t = sensors.getTempCByIndex(0);
 int ti = (int)t;
 int td = (((int)(t*100))\%100);
 sprintf(str, "AT$SF=%02X%02X\n", ti, td);
 Serial.print(str);
 mySerial.print(str);
void setup(void){
 // start serial port
 Serial.begin(9600);
 Serial.setTimeout(10);
 mySerial.begin(9600);
 mySerial.setTimeout(10);
 // Start up the library
 sensors.begin();
 measure();
void loop(void){
 if(mySerial.available()){
 Serial.print(mySerial.readString());
 }
 if(Serial.available()){
  String cmd = Serial.readString();
  cmd.trim();
  if(cmd == "measure"){
   measure();
  }else{
   //do not use println because it sends \r\n and while
   //sending \n the sigfox module is already sending response
   //and software serial has only half duplex
   mySerial.print(cmd);
   mySerial.print("\n");
```



```
static unsigned long last = 0;
if((millis() - last) > 660000){
    last = millis();
    measure();
}

static unsigned long last = 0;
if((millis() - last) > 660000){
    last = millis();
    measure();
}
```


2. System Functional Description

2.1. AT command examples

This section explain basic AT commands.

2.1.1. Reading ID and PAC example

AT command	Description
AT\$I=10	Return device ID
AT\$I=11	Return PAC

2.1.2. Sending data example

AT command	Description
AT\$SF=10AA	Send value 0x10AA to Sigfox network. Returns "OK".
AT\$SF=10AA,1	Send 0x10AA with downlink request. Returns "OK" and "RX=00 00 00 00 00 00 00", where "00" represents received data.

2.1.3. Measuring

AT command	Description
AT\$V?	Return current volatage and voltage measured during the last
	transmission in mV.
AT\$T?	Get internal temperature in 1/10 th of a degree Celsius.

2.1.4. Sleep mode

AT command	Description
AT\$P=1	Enter sleep mode. Send a break ('\n') to wake up.
AT\$P=2	Enter deep sleep mode. Make power reset module to wake up.

LPWANCZECH IOT CLOUD

LPWAN SigFox node

2.2. UART AT Command Interface

The UART AT command interface provides a set of commands to control the operation of the LPWAN Sigfox node.

AT command	Name	description	1		
AT	Dummy Command	Just return 'OK' and does nothing else. Can be			
		used to check communication.			
AT\$SB=bit[,bit]	Send Bit	Send a bit status (0 or 1). Optional bit flag			
		indicates if	AX-SFEU should r	eceive a downlink	
		frame.			
AT\$SF=frame[,bit]	Send Frame	Send paylo	ad data, 1 to 12 b	ytes. Optional bit flag	
		indicates if	AX-SFEU should r	eceive a downlink	
		frame.			
AT\$SO	Manually send out of	Send the o	ut-of-band messa	ge.	
	band message				
AT\$TR?	Get the transmit repeat	Returns the	e number of trans	mit repeats.	
AT\$TR=uint	Set transmit repeat	Sets the tra	ansmit repeat.		
ATSuint?	Get Register		_	n register's value.	
			r "Registers" for a		
ATSuint=uint	Set Register	Change a c	onfiguration regis	ter.	
ATSuint=?	Get Register Range	Returns the	e allowed range o	f registers.	
AT\$IF=uint	Set TX Frequency	Set the output carrier macro channel for Sigfox			
		frames.			
AT\$IF?	Get TX Frequency	Get the currently chosen TX frequency.			
AT\$DR=uint	Set RX Frequency	Set the reception carrier macro channel for Sigfox			
		frames.			
AT\$DR?	Get RX Frequency		rently chosen RX		
AT\$CW=uint,bit[,	Continuous Wave			gfox certification it is	
uint_opt]				ous wave, i.e. just the	
			ency without any	modulation.	
		Parameters	S:		
		Nama	Danas	Description	
		Name	Range	Description	
		Freque-	80000000-	Continuous wave	
		ncy	99999999, 0	frequency in Hz.	
				Use 868130000	
				for Sigfox or 0 to	
				keep previous	
		N/o al a	0.1	frequency.	
		Mode	0, 1	Enable or disable	
		Day 1	0.14	carrier wave.	
		Power	0-14	dBm of signal	
4.T4.CD	T			Default: 14	
AT\$CB=uint_opt,	Test Mode: TX constant		•	ful to send a specific	
bit	byte	bit pattern	. The first parame	ter specifies the byte	

	1	1.000	d Haa (1) far a /maayda	\		
			to send. Use '-1' for a (pseudo-)random pattern Parameters:			
		Nam		Description		
		Patte		Byte to send.		
			·	Use '-1' for a		
				(pseudo-		
)random		
				pattern.		
		Mod	e 0, 1	Enable or		
				disable		
				pattern test		
4.7472				mode.		
AT\$T?	Get Temperature		ure internal temperature of a degree Celsius.	and return it in		
AT\$V?	Get Voltages	Returi	n current voltage and vol	tage measured		
		during	the last transmission in	mV.		
AT\$I=uint	Information	Displa	y various product inform			
		0:	Software Name & Vers			
			Example Response: AX	-SFEU 1.0.6-ETSI		
		1:	Contact Detail			
			Example Response:	•		
		2.	info@lpwan.cz			
		2:	2: Silicon revision lower byte			
		2.	Example Response: 8F 3: Silicon revision upper byte			
			Example Response: 00			
		4:				
			Example Response: 1			
		5:	· ·			
			Example Response: 0			
		7:	Firmware Variant (Fred (EU/US))	quency Band etc.		
			Example Response: ET	SI		
		8:	Firmware VCS Version			
			Example Response: V1	.0.2-36		
		9:	SIGFOX Library Version	1		
			Example Response: DL	0-1.4		
		10:	Device ID			
			Example Response: 00	012345		
		11:	PAC			
4			Example Response: 01			
AT\$P=uint	Set Power Mode		nserve power, the AX-SFE	•		
		-	sleep manually. Depending on power mode, you			
		will be responsible for waking up the AX-SFEU				
		again! 0: Software reset (settings will be reset to				
			values in flash)	Will DC 16361 10		
		1:	Sleep (send a break to w	vake up)		

		2: Deep sleep (toggle GPIO9 or RESET_N pin to wake up; the AX-SFEU is not running and all settings will be reset!)		
AT\$WR	Save Config	Write all settings to flash (RX/TX frequencies, registers) so they survive reset/deep sleep or loss of power. Use AT\$P=0 to reset the AX-SFEU and load settings from flash.		
AT:Pn?	Get GPIO Pin*	Return the settings of the GPIO Pin n; n can range from 0 to 9. A character string is returned describing the mode of the pin, followed by the actual value. If the pin is configured as analog pin, then the voltage (range 0 1 V) is returned. The mode characters have the following meaning: Mode Description 0		
AT:Pn=?	Get GPIO Pin Range*	Print a list of possible modes for a pin. The table below lists the response. Pin Mode P0 0, 1, Z, U, A, T P1 0, 1, Z, U, A P2 0, 1, Z, U, A P3 0, 1, Z, U, A P4 0, 1, Z, U, T P5 0, 1, Z, U P6 0, 1, Z, U P7 0, 1, Z, U P8 0, 1, Z, U		
AT:Pn=mode	Set GPIO Pin*	P9 0, 1, Z, U Set the GPIO pin mode. For a list of the modes see the command AT:Pn?		
AT:ADC Pn[-Pn [(1V 10V)]]?	Get GPIO Pin Analog Voltage*	Measure the voltage applied to a GPIO pin. The command also allows measurement of the voltage difference across two GPIO pins. In differential mode, the full scale range may also be specified as 1 V or 10 V. Note however that the pin input voltages must not exceed the range 0VDD_IO. The command returns the result as fraction of the full scale range (1 V if none is		

		specified). The GPIO pins referenced should be initialized to analog mode before issuing this				
		command.				
AT:SPI[(A B C D)]=bytes	SPI Transaction*	This command clocks out bytes on the SPI port. The clock frequency is 312.5 kHz. The command returns the bytes read on MISO during output. Optionally the clocking mode may be specified (default is A):				
		Mode Clock Clock Phase Inversion				
		Α	Normal	Normal		
		В	Normal	Inverted		
		С	Inverted	Normal		
		D	inverted	Inverted		
		SEL (GPIOX) MOSI D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 MISO D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 SCK \ B \ C \ D \ D \ D \ D \ D \ D \ D \ D \ D				
		Note that SEL, if needed, is not generated by this				
		command, and must instead be driven using				
		standard GPIO commands (AT:Pn=0 1).				
AT:CLK=freq,reffr eq	Set Clock Generator*	Output a square wave on the pin(s) set to T mode. The frequency of the square wave is (freq / 2 ¹⁶) × reffreq. Possible values for reffreq are 20000000, 10000000, 5000000, 2500000, 1250000, 625000, 312500, 156250. Possible values if freq are 065535.				
AT:CLK=OFF	Turn off Clock Generator*	Switch off the clock generator				
AT:CLK?	Get Clock Generator*	Return the settings of the clock generator. Two numbers are returned, freq and reffreq.				
AT:DAC=value	Set ΣΔ DAC*	Output a $\Sigma\Delta$ DAC value on the pin(s) set to T mode. Parameter value may be in the range -3276832767 . The average output voltage is $(1/2 + \text{value} / 2^{17}) \times \text{VDD}$. An external low pass filter is needed to get smooth output voltages. The modulation frequency is 20 MHz. A possible low pass filter choice is a simple RC low pass filter with R = $10 \text{ k}\Omega$ and C = $1 \mu\text{F}$.				
AT:DAC=OFF	Turn off ΣΔ DAC*	Switch off the DA				
AT:DAC?	Get ΣΔ DAC*	Return the DAC				
AT\$TM=mode,co nfig	Activates the Sigfox Testmode	Available test mo	odes:			

		Send only BPSK with Synchro Bit + Synchro frame + PN sequence: No hopping centered on the TX_frequency. Config bits 0 to 6 define the number of repetitions. Bit 7 of config defines if a delay is applied of not in the loop 1. TX Protocol: Tx mode with full protocol with Sigfox key: Send Sigfox protocol frames with initiate downlink flag = True. Config defines the number of repetitions.		
		2. RX Protocol: This mode tests the complete downlink protocol in Downlink only. Config defines the number of repetitions.		
		3. RX GFSK: RX mode with known pattern with SB + SF + Pattern on RX_frequency (internal comparison with received frame ⇔ known pattern = AA AA B2 27 1F 20 41 84 32 68 C5 BA AE 79 E7 F6 DD 9B. Config defines the number of repetitions.		
		4. RX Sensitivity: Does uplink + downlink frame with Sigfox key and specific timings. This test is specific to SIGFOX's test equipments & softwares.		
		5. TX Synthesis: Does one uplink frame on each Sigfox channel to measure frequency synthesis step.		
AT\$SE	Starts AT\$TM-3,255 indefinitely	Convenience command for sensitivity tests.		
AT\$SL[=frame]	Send local loop	Sends a local loop frame with optional payload of 1 to 12 bytes. Default payload: 0x84, 0x32, 0x68, 0xC5, 0xBA, 0x53, 0xAE, 0x79, 0xE7, 0xF6, 0xDD, 0x9B.		
AT\$RL	Receive local loop	Starts listening for a local loop.		

^{*} not applicable on LPWAN Sigfox node, there is no GPIO pins connected

Registers

Number	Name	Description	Default	Range	Units
300	Out Of Band	AX-SFEU sends periodic static	24	0-24	Hours
	Period	messages to indicate that they are alive. Set to 0 to disable.			
302	Power Level	The output power of the radio.	14	0-14	dBm

CZECH IOT CLOUD

LPWAN SigFox node

3. ELECTRICAL CHARACTERISTIC

2.3. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Rating	Unit
VCC	Module input voltage	-0.5 to 5.5	٧
OT	Operating Temperature	-30 to +85	°C
ST	Storage Temperature	-40 to +125	°C

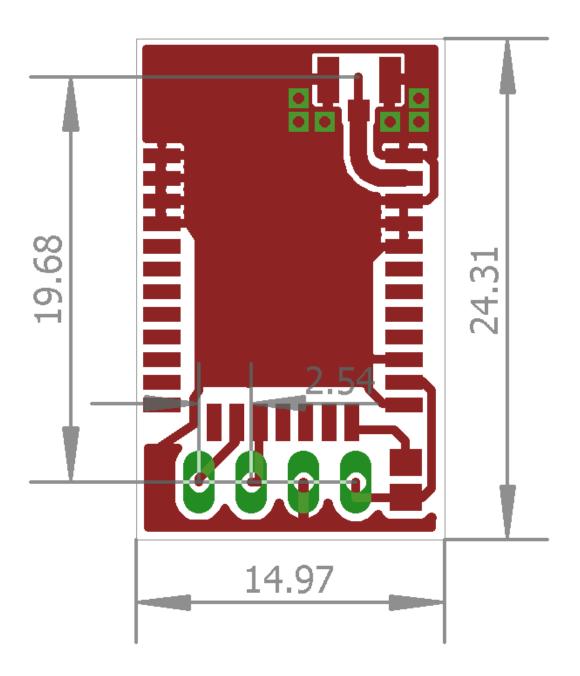
2.4. DC Characteristics

Symbol	Parameter	Min	Тур.	Max	Unit
VCC	Module input voltage	1.8	3.3	3.6	V
Current	Tx Current (@"15" setting, CW)	-	65	-	mA
	Tx Current (@"14" setting, CW)	-	54	-	mA
	Rx Current	-	15	-	mA
	Sleep Current	-	2	-	μΑ
	Standby current	-	500	-	μΑ

2.5. I/O Specifications

Symbol	Parameter	Min	Тур.	Max	Unit
VIH	High level input voltage @VCC=3.3V	2	-	-	V
VIL	High level input voltage @VCC=3.3V	-	-	0.8	V

2.6. RF Specifications


Conditions: VCC=3.3V, Temp=25°C

Parameter	Min	Тур.	Max	Unit
RF Frequency TX		868.130		MHz
RF Frequency RX		869.525		MHz
Tx output power (at "15" setting)	12.5	13.5	15.5	dBm
Tx output power (at "14" setting)	11.5	12.5	14.5	dBm
Frequency Error Tolerance (+25°C)	-2.5	-	+2.5	ppm
2 nd Harmonics (conducted)	-	-37	-35	dBm
3 nd Harmonics (conducted)	-	-41	-35	dBm
Rx Sensitivity (@600bps, GFSK)	-127	-		dBm
Rx Spurious Emission (30MHz to 12.75GHz)			-54	dBm

🕰 4. DRAWING

